Published Date: 01.04.2024

New Method for Assessing Algorithmic Thinking in Non-Programmer Tasks: Exploratory Study2

Annotation

Algorithmic thinking is primarily assessed through standardized tests and professional tasks, limiting the ability to identify the specifics of algorithmization in individuals with varying programming experience. To refine the hypothesis regarding such specificity, we proposed an alternative assessment method that requires algorithmization but not specialized programming knowledge. Using the solution protocols of the task we developed, we identified quality parameters of algorithmization that allow for reliable encoding. The results demonstrated that the proposed method provides the required variability in solutions and enables the creation of new task variants based on the identified parameters. Additionally, the hypothesis about the specificity of algorithmization in individuals with different programming experience was further clarified, although its validation requires specific research.




Library

1. Koenemann, J. Expert problem solving strategies for program comprehension / J. Koenemann, S. P. Robertson // The SIGCHI Conference on Human Factors in Computing Systems. — New Orleans, 1991. — P. 125–130.
2. Ye, N. Expert-novice knowledge of computer programming at different levels of abstraction / N. Ye, G. Salvendy // Ergonomics. — 1996. — Vol. 39, № 3. — P. 461–481.
3. Woodrow, B. Expert-novice differences for software: implications for problem-solving and knowledge acquisition / B. Woodrow // Behaviour and Information Technology. — 1986. — Vol. 5, № 1. — P. 15–29.
4. Weiser, M. Programming problem representation in novice and expert programmers / M. Weiser, J. Shertz // International Journal of Man-Machine Studies. — 1983. — Vol. 19, № 4. — P. 391–398.
5. Using eye tracking to examine expert-novice differences during simulated surgical training : A case study / S. Li, M. C. Duffy, P. L. Susanne [et al.] // Computers in Human Behavior. — 2023. — Vol. 144, № 7. — DOI: 10.1016/j.chb.2023.107720
6. Understanding the Differences Between Novice and Expert Programmers in Memorizing Source / M. Kramer, M. Barkmin, D. Tobinski, T. Brinda // Tomorrow’s Learning : Involving Everyone. Learning with and about Technologies and Computing. WCCE 2017. IFIP A
7. Sala, G. Experts’ memory superiority for domain-specific random material generalizes across fields of expertise : A meta-analysis / G. Sala, F. Gobet // Memory and Cognition. — 2017. — Vol. 45, № 2. — DOI: 10.3758/s13421-016-0663-2
8. Psycharis, S. The effects of computer programming on high school students’ reasoning skills and mathematical self-efficacy and problem solving / S. Psycharis, M. Kallia // Instructional Science. — 2017. — Vol. 45. — P. 583–602.
9. Obaidellah, U. A Survey on the Usage of Eye-Tracking in Computer Programming / U. Obaidellah, M. Haek, P. C.-H. Cheng // ACM Computing Surveys. — 2018. — Vol. 51, № 1. — DOI: 10.1145/3145904
10. Norman, D. A. User centered system design : New perspectives on human-computer interaction / D. A. Norman, S. W. Draper // Cognitive Engineering, Lawrence Erlbaum Associates, Hillsdale. — New Jersey, 1986. — P. 31–61.
11. Metacognitive Difficulties Faced by Novice Programmers in Automated Assessment Tools / J. Prather, P. Raymond, M. Kayla, A. Peters // ACM Conference on International Computing Education Research (ICER’18) / Association for Computing Machinery. — New Y
12. Кукушкина, Ю. А. Критическое мышление как фактор профессиональной компетентности программистов / Ю. А Кукушкина, В. Ф. Спиридонов // Психология. — 2008. — Т. 5, № 1. — С. 165–174.
13. Kukushkina, Yu. A. Kriticheskoe my`shlenie kak faktor professional`noj kompetentnosti programmistov / Yu. A. Kukushkina, V. F. Spiridonov // Psixologiya. — 2008. — T. 5, № 1. — S. 165–174.
14. How Experts Adapt Their Gaze Behavior When Modeling a Task to Novices / S. N. Emhardt, E. M. Kok, H. Jarodzka [et al.]. // Cognitive Science. — 2020. — Vol. 44, № 9. — e12893. — DOI: 10.1111/cogs.12893
15. Fox, R. W. The Effect of Computer Programming Education on the Reasoning Skills of High School Students / R. W. Fox, M. E. Farmer // Instructional Science. — 2011. — Vol. 45, № 5. — P. 583–602.
16. Fessakis, G. Problem solving by 5–6 years old kindergarten children in a computer programming environment: a case study / G. Fessakis, E. Gouli, E. Mavroudi // Computers and Education. — 2013. — Vol. 63. — P. 87–97.
17. Eye tracking in computing education / T. Busjahn, C. Schulte, B. Sharif [et al.] // The Tenth Annual Conference on International Computing Education Research. — Glasgow, 2014. — P. 3–10.
18. Developer Reading Behavior While Summarizing Java Methods : Size and Context Matters / N. J. Abid, B. Sharif, N. Dragan [et al.] // IEEE/ACM 41st International Conference on Software Engineering (ICSE). — Montreal, 2019. — DOI: 10.1109/ICSE.2019.00052
19. Comparing Programming Language Comprehension between Novice and Expert Programmers Using EEG Analysis / S. Lee, A. Matteson, D. Hooshyar [et al.] // IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE). — Taichung, Taiwan, 20
20. Clements, D. H. Enhancement of Creativity in Computer Environments / D. H. Clements // American Educational Research Journal. — 1991. — Vol. 28, № 1. — P. 173–187.
21. Cathcart, W. G. Effects of Logo Instruction on Cognitive Style / W. G. Cathcart // Journal of Educational Computing Research. — 1990. — Vol. 6, № 2. — P. 231–242.
22. Bernard, M. Enhancing the Metacognitive Skill of Novice Programmers Through Collaborative Learning / M. Bernard, E. Bachu // Intelligent Systems Reference Library. — 2015. — Vol. 76. — P. 277–298. — DOI: 10.1007/978-3-319-11062-2_11
23. Aljehane, S. Determining Differences in Reading Behavior Between Experts and Novices by Investigating Eye Movement on Source Code Constructs During a Bug Fixing Task / S. Aljehane, B. Sharif, J. Maletic // ACM Symposium on Eye Tracking Research and App
24. Adelson, B. Problem solving and the development of abstract categories in programming languages / B. Adelson // Memory and Cognition. — 1981. — Vol. 9. — P. 422–433.
25. Rossijskaya Federaciya. Pravitel`stvo. Ob utverzhdenii federal`nogo gosudarstvennogo obrazovatel`nogo standarta srednego professional`nogo obrazovaniya po special`nosti 09.02.03 Programmirovanie v komp`yuterny`x sistemax : Prikaz Minobrnauki RF ot 28.07.2
26. Российская Федерация. Правительство. Об утверждении федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.03 Программирование в компьютерных системах : Приказ Минобрнауки РФ от 28.07.2014
27. Primery` zadanij predvaritel`nogo testirovaniya PISA 2015 / Federal`ny`j institut ocenki kachestva obrazovaniya. — OECD, 2015. — 89 s. — (Programma OE`SR «Mezhdunarodnaya ocenka obrazovatel`ny`x dostizhenij uchashhixsya»).
28. Примеры заданий предварительного тестирования PISA 2015 / Федеральный институт оценки качества образования. — OECD, 2015. — 89 с. — (Программа ОЭСР «Международная оценка образовательных достижений учащихся»).
29. Orel, E. A. Osobennosti intellekta professional`ny`x programmistov / E. A. Orel // Vestnik Moskovskogo universiteta. Seriya 14, Psixologiya. — 2007. — № 2. — S. 70–79.
30. Орел, Е. А. Особенности интеллекта профессиональных программистов / Е. А. Орел // Вестник Московского университета. Серия 14, Психология. — 2007. — № 2. — С. 70–79.

Other articles