Published Date: 01.01.2023

Making Sense: Psychological Theories for Concept Map Interpretation

Annotation

One way to represent the structure of students’ concepts is through the method of concept maps. Their analysis is effectively carried out using network theories, but for meaningful psychological interpretation the possibilities of mathematics are expectedly limited. At the same time, psychological theories of conceptual development provide meaningful directions for the mathematical analysis of concept maps and interpret the results of such analysis. The paper demonstrates possible ways of applying network analysis within the framework of L. S. Vygotsky’s theory.




Library

1. 23. Wilson, J. M. Differences in knowledge networks about acids and bases of year-12, undergraduate and postgraduate chemistry students / J. M. Wilson // Research in Science Education. — 1998. — Vol. 28, № 4. — P. 429–446.
2. 22. Walker, J. M. T. Concept mapping as a form of student assessment and instruction in the domain of bioengineering / J. M. T. Walker, P. H. King // J. of Engineering Education. — 2003. — Vol. 92, № 2. — P. 167–178.
3. 21. Thurn, C. M. Concept Mapping in Magnetism and Electrostatics : Core Concepts and Development over Time / C. M. Thurn, B. Hänger, T. Kokkonen // Education Sciences. — 2020. — Vol. 10, № 5. — doi: 10.3390/educsci10050129
4. 20. Sun, J. Understanding health information technology adoption : A synthesis of literature from an activity perspective / J. Sun, Z. Qu // Information Systems Frontiers. — 2015. — Vol. 17, № 5. — P. 1177–1190.
5. 19. Strautmane, M. Concept Map-Based Knowledge Assessment Tasks and Their Scoring Criteria: an Overview / M. Strautmane // Concept Maps : Theory, Methodology, Technology : Proceedings of the Fifth International Conference on Concept Mapping, Malta, Vallet
6. 18. Siew, C. S. Q. Using network science to analyze concept maps of psychology undergraduates / C. S. Q. Siew // Applied Cognitive Psychology. — 2019. — Vol. 33, № 4. — P. 662–668.
7. 17. Richmond, S. S. A set of guidelines for the consistent assessment of concept maps / S. S. Richmond, J. F. Defranco, K. Jablokow // International J. of Engineering Education. — 2014. — Vol. 30, № 5. — P. 1072–1082.
8. 16. Özdemir, G. An Overview of Conceptual Change Theories / G. Özdemir, D.B. Clark // Conceptual Change. — 2007. — Vol. 3, № 2. — P. 351–361.
9. 15. Novak, J. D. Concept mapping : A useful tool for science education / J. D. Novak // J. of Research in Science Teaching. — 1990. — Vol. 27, № 10. — P. 937–949.
10. 14. Koponen, I. T. Concept networks of students’ knowledge of relationships between physics concepts: finding key concepts and their epistemic support / I. T. Koponen, M. Nousiainen // Applied Network Science. — 2018. — Vol. 3, № 1. — doi: 10.1007/s411090
11. 13. Koponen, I. Pre-service physics teachers’ understanding of the relational structure of physics concepts : Organising subject contents for purposes of teaching / I. Koponen, M. Nousiainen // International J. of Science and Mathematics Education. — 2013
12. 12. Koponen, I. T. Entropy and energy in characterizing the organization of concept maps in learning science / I. T. Koponen,M. Pehkonen // Entropy. — 2010. — Vol. 12, № 7. — P. 1653–1672.
13. 11. Kleinberg, J. M. Authoritative sources in a hyperlinked environment / J. M. Kleinberg // J. of the ACM (JACM). — 1999. — Vol. 46, № 5. — P. 604–632.
14. 10. Kinchin, I. M. How a qualitative approach to concept map analysis can be used to aid learning by illustrating patterns of conceptual development / I. M. Kinchin, D. B. Hay, A. Adams // Educational Research. — 2000. — Vol. 42, № 1. — P. 43–57.
15. 9. Kapuza, A. The network approach to assess the structure of knowledge : Storage, distribution and retrieval as three measures in analysing concept maps / A. Kapuza, I. T. Koponen, Y. Tyumeneva // British J. of Educational Technology. — 2020. — Vol. 51,
16. 8. Iñiguez, G. Bridging the gap between graphs and networks / G. Iñiguez, F. Battiston, M. Karsai // Communications Physics. — 2020. — Vol. 3, № 1. — doi: 10.1038/s42005-0200359-6
17. 7. Ifenthaler, D. The mystery of cognitive structure and how we can detect it / D.Ifenthaler, I. Masduki, N. M. Seel // Instructional Science. — 2011. — Vol. 39, № 1. — P. 41–61.
18. 6. Harrison, A. G. A typology of school science models / A. G. Harrison, D. F. Treagust // International J. of Science Education. — 2000. — Vol. 22, № 9. — P. 1011–1026.
19. 5. Goldman, A. W. Concept mapping and network analysis : An analytic approach to measure ties among constructs / A. W. Goldman, M. Kane // Evaluation and Program Planning. — 2014. — Vol. 47. — P. 9–17.
20. 4. Gkevrou, M. Illustration of a Software-Aided Content Analysis Methodology Applied to Educational Research / M. Gkevrou, D. Stamovlasis // Education Sciences. — 2022. — Vol. 12, № 5. — doi:10.3390/educsci12050328
21. 3. Brin, S. The anatomy of a large-scale hypertextual Web search engine / S. Brin // Computer Networks and ISDN Systems. — 1998. — Vol. 30, № 1–7. — P. 107–117.
22. Zhan Piazhe: teoriya, e`ksperimenty`, diskussii / [pod red. L. F. Obuxovoj i G. V. Burmenskoj]. — M. : Gardariki, 2001. — 622 s.
23. 2. Жан Пиаже: теория, эксперименты, дискуссии / [под ред. Л. Ф. Обуховой и Г. В. Бурменской]. — М. : Гардарики, 2001. — 622 c.
24. Vy`gotskij, L. S. My`shlenie i rech` / L. S. Vy`gotskij. — 5-e izd. — M. : Labirint, 1999.
25. 1. Выготский, Л. С. Мышление и речь / Л. С. Выготский. — 5-е изд. — М. : Лабиринт, 1999.

Other articles